L'éclairage par fibre optique a connu ces dernières années un développement considérable, couvrant tous les domaines d'applications de la lumière.

Musées, hôtels, commerces, PLV, industries, spectacles, illuminations extérieure; et éclairages anti-vandalisme ont été tour à tour les laboratoires d'essais de ce moyen fantastique permettant de capter, véhiculer puis émettre la lumière à l'endroit exact que l'on souhaite.
Qu'est-ce que la fibre optique ?

La fibre optique est constituée de deux parties essentielles qui sont le cœur et la gaine optique.

Le cœur, de forme cylindrique, est la partie centrale et aussi la plus épaisse. La gaine, dont l'indice de réfraction est plus faible que celui du cœur, est beaucoup plus fine.

Grâce au principe de la réflexion totale*, un rayon lumineux injecté dans le cœur est réfléchi à l'interface cœur/gaine et se déplace en zigzag, produisant ainsi une infinité de réflexions totales.

* Un rayon lumineux se déplace dans l'air en ligne droite. Lorsqu'il rencontre un autre milieu comme par exemple le verre, ce 'rayon est détourné et change de direction. On dit alors qu'il est réfracté si l'indice de réfraction du milieu par lequel arrive le rayon est inférieur à celui dans lequel il pénètre. Les angles d'incidence i et de réfraction i, sont reliés au passage de l'interface par la formule : \(n \times \sin i = n' \times \sin i' \), (fig. 1).

A l'inverse, si l'indice de réfraction du premier milieu est supérieur à celui du second, la règle précédente ne peut s'appliquer si l'angle d'incidence est supérieur à une valeur limite donnée par : \(i_{\text{lim}} = \arcsin \left(\frac{n'}{n} \right) \), (fig. 2).

Dans ce cas, le rayon n'est plus réfracté, mais réfléchi dans le premier milieu selon un angle de réflexion égal à l'angle d'incidence.

Figures 1 et 2: Principe de réfraction et de réflexion totale.

Angle d'acceptance : Angle au-delà duquel les rayons lumineux ne sont plus guidés par réflexion totale.

Atténuation : Décroissance de la puissance lumineuse résultant de l'absorption et de la diffusion. Souvent exprimée en dB/m et proportionnelle à la longueur traversée. \(\alpha \text{ (dB)} = 10 \log \left(\frac{P_1}{P_0} \right) \).

Cœur : Partie centrale de la fibre optique dans laquelle se déplace la lumière et dont l'indice de réfraction est supérieur à celui de la gaine.

dB/m : Unité de mesure de la puissance optique définie par rapport à la valeur de 1 miliwatt. Si \(P_1 \) est donné en miliwatts, sa valeur en dB/m est obtenue par la formule \(P_1 \text{ (dB/m)} = 10 \log \left(\frac{P_1}{P_0} \right) \).

Indice de réfraction : Rapport entre la vitesse de la lumière dans le vide et la vitesse de la lumière dans un matériau considéré (vide 1 - eau 1,33 - verre 1,5 à 1,8 - PMMA 1,49 - Polycarbonate 1,50 à 1,57).

Ouverture numérique : Dépend de la différence d'indice entre le cœur et la gaine, selon la formule \(C.N. = \sqrt{n_1^2 - n_2^2} \).

La ouverture numérique est égale au sinus de l'angle d'acceptance.

Gaine optique : Partie entourant le cœur et d'indice plus faible que celui-ci.
Types de fibres optiques

L'enthousiasme suscité par cette nouvelle technique a comme toujours en pareil cas, été à l’origine de beaucoup de déceptions. Le recours aux fibres optiques doit correspondre à un besoin réel et s'imposer comme étant le meilleur moyen tant technique que créatif pour obtenir le résultat escompté.

Pour guider son choix, l'éclairagiste dispose de plusieurs types de fibres optiques :

♦ **Les fibres silice** ont des performances remarquables (atténuation de 30 à 40 dB/km) mais ont des ouvertures numériques très faibles (12 à 20°) et leur taille de 10 à 100 microns les réserve à une utilisation de transfert d'informations.

♦ **Les fibres en verre** sont avec les fibres de type PMMA les plus utilisées en éclairage. Bien qu'existant en 150 dB/km, leur atténuation est généralement de 200 dB/km pour une ouverture numérique de l'ordre de 80°. Leur avantage se base essentiellement sur le fait que le verre est inaltérable et résistant au feu. Cette dernière qualité est cependant limitée par les caractéristiques des colles ou résines employées pour leur mise en œuvre. Néanmoins, leur extrême finesse (50 à 70 microns) renchérissent par une manipulation importante des prix de revient déjà élevés et leur composition (verre-verre) les rend relativement fragiles aux manipulations interdisant de faibles rayons de courbure. Leur utilisation nous semble réservée pour des cas extrêmes où les garanties de durée dans le temps (au-delà de 20 ans) et de résistance à la chaleur et aux agressions sont les critères les plus importants.

♦ **Les fibres plastiques** sont presque toujours de type PMMA et n'ont cessé de progresser dans leurs performances. Leur atténuation est de 150 dB/km pour une ouverture numérique d'environ 55°. Le diamètre courant est de 1 mm, mais elles existent en 2 et 3 mm de diamètre. La facilité d'emploi, le prix et les performances photométriques expliquent notre choix pour le développement d'un programme d'usage courant. Une garantie constructeur de 10 ans compense l'inconvénient de la tenue au-delà de 20 ans et un surgénage en verre-silicone permet de les rentrer résistantes à l'épreuve du fil incandescent 850°. L'homogénéité de la plage lumineuse et une très bonne restitution du spectre visible, tout en filtrant UV et IR, sont des atouts supplémentaires.

♦ **Les fibres à cœur liquide** sont plus récentes et constituées d'une gaine réuse en polymère avec un cœur liquide. Leur diamètre varie de 3 à 8 mm et présente une excellente transmission dans le visible. Les problèmes de mise en œuvre et de manipulation sont tels que leur utilisation reste très limitée.

♦ **Les fibres optiques scintillantes et fluorescentes** présentent la particularité d'avoir un cœur dopé de telle sorte que la loi de la réflexion totale ne soit vraie que pour une partie du rayonnement. Elles sont capables de capter de la lumière ou des particules perpendiculairement à l'axe du cœur et réémettent en extrémité de fibre (souvent dans des longueurs d'onde différentes), d'où une utilisation pour des applications de mesures scientifiques ou détection.

♦ **Les fibres optiques à émission latérale** sont des fibres de mauvaise qualité dont l'atténuation atteint souvent 400 dB/km et dont les sortes sont utilisées pour réaliser des effets décoratifs. Leur emploi se limite à des longueurs de 20-25 m et nécessite des générateurs puissants avec une injection de lumière par les deux extrémités.
Choix du générateur

Comme nous l'avons vu précédemment, la fibre optique exige une injection de lumière selon un cône d'acceptance particulier à chaque type de fibre.

Pour la fibre de type PMMA, ce cône d'acceptance correspond de manière quasi parfaite au cône produit par les lampes Multi-Miror® de 42°. Ces lampes destinées initialement aux lecteurs de microfilms et utilisées ensuite par R.J. SCHELL® pour des applications d'éclairage architectural, ont le particularité de concentrer dans un second foyer un maximum de lumière sans recourir à un système optique composé de lentilles.

En outre, afin d'éliminer une accumulation de chaleur au point focale, le miroir comporte un revêtement dichroïque le rendant perméable pour 60 % au rayonnement calorique émis par le filament. Cette lumière "froide" permet l'emploi de générateurs sans ventilation forcée.

Par ailleurs, ce type de lampe présente l'avantage d'être un système optique extrêmement performant avec un rendement atteignant 86 %. Ce rendement exceptionnel allié à la précision du faisceau, débouche sur le fait qu'un générateur 12 volts 75 W n'est que 4 fois moins performant qu'un générateur pour lampe HQI 150 W alors que le flux lumineux des lampes est de 1 600 lumens contre 11 000 lumens.

Considérant que le flux émis en sortie de branche est directement proportionnel au nombre de fibres constituant cette branche, l'on s'aperçoit en pratique qu'une branche de Ø 8 mm partant d'un générateur 12 Volts 75 W a le même rendement que à même branche de 4 mm équipée d'un générateur HQI 150 W.

Si les longueurs de branches ne dépassent pas 3 à 4 m, il est souvent plus judicieux d'augmenter e diamètre des branches plutôt que d'augmenter la puissance du générateur.

Enfin, il ne faut pas oublier que la lumière solaire reste l'énergie la plus puissante et la moins chère. De récentes expériences, notamment au Japon, ont démontré qu'il était techniquement possible de l'utiliser, entre autres pour l'éclairage de locaux aveugles ou de circulation.

*René Jean SCHELL, directeur général de la Société Mole-Richardson de 1955 à 1991 a dès 1977 utilisé les lampes Multi-Miror® pour des applications d'éclairage architectural. De nombreuses distinctions dont l'Edison Award ont récompensé son initiative qui a été à l'origine des techniques d'éclairage TBT. René Jean SCHELL est aujourd'hui conseiller de notre société et a participé au développement de notre programme Fibre Optique.
Générateurs

Générateur 50/75/85 TI

Minigénérateur 50/75 TS

<table>
<thead>
<tr>
<th>Code</th>
<th>Désignation</th>
<th>Source</th>
<th>Durée</th>
<th>Ventilation forcée</th>
<th>Rendement</th>
</tr>
</thead>
<tbody>
<tr>
<td>CF 001</td>
<td>Minigénérateur transfo séparé 12 Vols / 75 W</td>
<td>MR 16</td>
<td>4 000</td>
<td>non</td>
<td>3,3 cd</td>
</tr>
<tr>
<td>CF 002</td>
<td>Générateur transfo incorporé 12 Volts / 75 W</td>
<td>MR 16</td>
<td>4 000</td>
<td>non</td>
<td>3,3 cd</td>
</tr>
<tr>
<td>CF 003</td>
<td>Générateur transfo incorporé 13 Volts / 85 W</td>
<td>MR 16</td>
<td>1 500</td>
<td>non</td>
<td>4,4 cd</td>
</tr>
<tr>
<td>CF 004</td>
<td>Générateur transfo incorporé 12 volts 75 W avecchangement de couleur</td>
<td>MR 16</td>
<td>4 000</td>
<td>oui</td>
<td></td>
</tr>
<tr>
<td>CF 005</td>
<td>Générateur Ballast incorporé HQI 156 W</td>
<td>HQI-T 150 W</td>
<td>6 000</td>
<td>oui</td>
<td>10 cd</td>
</tr>
<tr>
<td>CF 006</td>
<td>Générateur Ballast incorporé HQI 156 W avecchangement de couleur</td>
<td>HQI-T 150 W</td>
<td>6 000</td>
<td>oui</td>
<td></td>
</tr>
</tbody>
</table>

1 Durée de vie moyenne donnée à titre indicatif par les fabricants de sources.

2 Rendement en candales, soit nombre de lux à 1 m pour une fibre longueur 1 m Ø 1 mm type PMMA à latension nominale de la lampe.

Photométrie

Le rendement d'une branche est proportionnel au nombre de brins de 1 mm contenus dans la branche et de la longueur de cette branche.

<table>
<thead>
<tr>
<th>Générateur</th>
<th>Branche Ø1 1 brin</th>
<th>Branche Ø3 7 brins</th>
<th>Branche Ø4 13 brins</th>
<th>Branche Ø5 20 brins</th>
<th>Branche Ø6 30 brins</th>
<th>Branche Ø7 40 brins</th>
</tr>
</thead>
<tbody>
<tr>
<td>CF 002</td>
<td>3,3 cd</td>
<td>23 cd</td>
<td>43 cd</td>
<td>66 cd</td>
<td>99 cd</td>
<td>132 cd</td>
</tr>
<tr>
<td>CF 003</td>
<td>4,4 cd</td>
<td>30 cd</td>
<td>57 cd</td>
<td>88 cd</td>
<td>132 cd</td>
<td>176 cd</td>
</tr>
<tr>
<td>CF 005</td>
<td>11 cd</td>
<td>77 cd</td>
<td>143 cd</td>
<td>220 cd</td>
<td>330 cd</td>
<td>440 cd</td>
</tr>
</tbody>
</table>

Compte-tenu de l'absorption de la fibre PMMA, ces valeurs sont à diminuer, selon la longueur, de 3 % au ml.
Manchons - Connecteurs

Manchon commun

Manchon et connecteur commun pouvant recevoir 340 brins nus ou 200 brins gainés de 1 mm de diamètre. Les fibres optiques sont placées dans le connecteur de façon aléatoire, afin d'augmenter l'homogénéité d'une branche à l'autre.

CF 007 Manchon commun / générateur
CF 008 Connecteur commun / fibre

Manchon départs individuels (4 départs Ø 7 maxi)

Connecteurs départs individuels (branches Ø 3-45-6-7)

Manchon et connecteur permettant de disposer de 4 départs individuels pour branche jusqu'à 7 mm de diamètre utile. Cette possibilité offre une souplesse d'utilisation supplémentaire, notamment pour la mise en place des branches.

CF 009 Manchon individuel / générateur
CF 010 Connecteur individuel / fibre

Fibre optique

Fibre Ø 1 mm nue pour des applications spéciales en intégration.

CF 011 Fibre PMMA nue Ø 1 mm (ml) (maxi 340/Connecteur)

Fibre Ø 1 mm gainée permettant la réalisation d'effets décoratifs, notamment de ciel étoilé.

CF 012 Fibre PMMA gainée Ø 1 mm (ml) (maxi 200/Connect.)

Branche fibre optique

CF 013 Branche Ø 3 mm utile (ml) 7 brins
CF 014 Branche Ø 4 mm utile (ml) 13 brins
CF 015 Branche Ø 5 mm utile (ml) 20 brins
CF 016 Branche Ø 6 mm utile (ml) 30 brins
CF 017 Branche Ø 7 mm utile (ml) 40 brins

Les branches sont constituées de fibres individuelles assemblées selon la taille de la branche, puis polies aux deux extrémités. En version standard, elles sont recouvertes d'une gaine de protection Cetaver 850°. Pour des cas extrêmes, les branches de fibre optique peuvent être recouvertes d'une gaine métallique flexible.
Fibre à émission latérale

Fibre optique pour effets décoratifs type 126 brins avec réflecteur intérieur Ø extérieur 15 mm à utiliser pour des longueurs n'excédant pas 20 ml avec les générateurs pour lampes HQI-T 150W. Code CF 053 (ml)

Embouts d'extrémité

Ferrule d'extrémité pour fibre Ø 1 mm sertie et polie en extrémité. FILETAGE M 6 livré avec 2 écrous pour mise en œuvre mécanique.

CF 018 Ferrule M 6

Embout d’extrémité pour branche de 3 à 7 mm utile. FILETAGE M 10 livré avec contre-écrou et écrou moletés pour mise en œuvre mécanique. Peut être équipé d’embouts optiques et accessoires.

CF 019 Embout d’extrémité

Embouts flexible permettant une orientation très précise du faisceau. Mise en œuvre très facile par serrage en tenaille dans le support (Attention : accepte des branches Ø 5 mm max).

- CF 020 Emboutflexible blanc longueur 150 mm
- CF 021 Emboutflexible noir longueur 150 mm
- CF 022 Emboutflexible chromé longueur 150 mm
- CF 023 Emboutflexible doré longueur 150 mm
- CF 024 Emboutflexible blanc longueur 300 mm
- CF 025 Emboutflexible noir longueur 300 mm
- CF 026 Emboutflexible chromé longueur 300 mm
- CF 027 Emboutflexible doré longueur 300 mm
- CF 028 Emboutflexible blanc longueur 500 mm
- CF 029 Emboutflexible noir longueur 500 mm
- CF 030 Emboutflexible chromé longueur 500 mm
- CF 031 Emboutflexible doré longueur 500 mm

Maison des Vins d’Alsace - F. Colmar - Centre d’analyses sensorielles.
Architectes N. Decrèsière - M. Frey - V. Gobyn
Spot **encastré fixe** facilitant la mise en œuvre de la fibre optique au cas où le faux-plafond ne serait pas démontable.

- CF 042 Encastré fixe blanc
- CF 043 Encastré fixe noir
- CF 044 Encastré fixe chromé
- CF 045 Encastré fixe doré

Spot **encastré orientable** facilitant la mise en œuvre de la fibre optique au cas où le faux-plafond ne serait pas démontable.

- CF 046 Encastré orientable blanc
- CF 047 Encastré orientable noir
- CF 048 Encastré orientable chromé
- CF 049 Encastré orientable doré

Rotule permettant une orientation très précise des embouts d’extrémités

- CF 050 Rotué blanc
- CF 051 Rotué noir
- CF 052 Rotué chromé
Embouts optiques

L'adjonction d'un verre clair permet une protection efficace de l'extrémité de la fibre, notamment en milieu industriel.

CF 032 Porte-filtre blanc
CF 033 Porte-filtre noir
CF 034 Filtre coloré
CF 035 Filtre verre

Focalisateur permettant de réaliser une tache de lumière de type plan convexe avec des bords nets. L'angle d'ouverture est ramené de 55° à 30° ou 14°. La plage à 1 m est de 0,50 m pour le focalisateur 30° et de 0,30 m pour le focalisateur 14°.

Le Coefficient multiplicateur à appliquer aux rendements photométriques de base est de 2,5 pour le focalisateur 30° et de 10 pour le focalisateur 14°.

CF 036 Focalisateur 30° bl. CF 038 Focalisateur 30° noir
CF 037 Focalisateur 14° bl. CF 039 Focalisateur 14° noir

Note importante :
De nombreux autres accessoires ou embouts optiques sont réalisés spécifiquement lorsqu'eux impératifs techniques l'exigent. Rampes, Micro-cadres, luminaires spéciaux anti-vandalisme, appareils extérieurs et industriels font partie de nos fabrications spéciales.